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Abstrm: Ketals react with 1,2-bis(trimethylsiloxy)qclopentene in the presence of a large excess of boron 
trifluoride etherate to provide 2,2disubstituted 1,3eyclohexanediones in very good yields. 

Kuwajima and coworkers’ demonstrated that 1,2-bis(trimethylsiloxy)cyclobutene (1) reacts with a ketal 

(e.g. 2), under catalysis by BF3 etherate, to give a cyclobutanone product 3. In trifluoroacetic acid 3 rear- 

ranges to a 2,2disuhstituted 1,3cyclopentanedione 4. An excess of BF3 etherate and a longer reaction time 

provides 4 directly in a better yield.2 In contrast, Pattenden and Teague3 reported that 1,2- 

bis(trimethylsiloxy)cyclopentene (5) reacts initially with 2 in an analogous fashion to give the cyclopentanone 

6, but when this is treated withpara-toluenesulfonic acid rearrangement to 2,2-dimethyl-1,3cyclohexanedione 

(8) does not occur; instead the product (21%) was suggested to be 3-isopropyl-1,2-cyclopentanedione (7). 
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We have examined the reactions of 5 with a variety of ketals in the presence of a large excess of BF:, eth- 

crate. The substrates included dimethyl and diethyl ketals, 1,3dioxolanes and a 1,3-dioxane (Table). In every 

instance one major product was observed, and in every instance this pTOd~ct was undoubtedly a 2,2- 

disubstituted 1,3-cyclohexanedione.4 The number of resonances in the 13C rum spectra of the pure products 8 

- 12 in every case indicated the presence of a symmetrical molecule, and the carbonyl resonances confirmed a 

nonconjugated (i.e. nonenolized) structure. The product 13 derived from the norcamphor ethylene ketal gave 

rise to two nonenolized carbonyl resonances. The infrared spectrum of each product displayed two bands in 

its carbonyl region, consistent with many other 2,2-disubstituted 1,3-cyclohexanediones described in the litera- 

ture.5 

Comparing the reactions of 5 and l2 qualitatively, we found the crude reaction products of the former to 

be much darker in color. Careful chromatography was necessary to remove this color. It was perhaps 

because of this that quantitatively we realized slightly lower isolated yields of the pure cyclohexanediones, but 

CC-MS analysis of the crude product mixtures from the reactions of 5 showed nearly complete conversion of 

ketals to cyclohexanediones in most cases. Thus, the reaction of a ketal with 5 is an efficient method for the 

preparation of a 2,2disubstituted 1,3-cyclohexanedione. This is clearly an attractive alternative to double 

alkylation of 1,3-cyclohexanedione, a process that in most instances provides a poor yield of product due to the 

formation of unwanted 0-alkylation products and ring cleavage.6 Products like 10 and 11 would be especially 

difficult to obtain by double alkylation. Furthermore, for the synthesis of 12 the reaction of a cyclohexanone 

ketal with 5 is shorter and more efficient than the route via acid-catalysed rearrangement of an @-epoxy 

ketone? 

The following is a representative procedure: A solution of cyclohexanone ethylene ketal(336.3 mg, 2.36 

mmol) in dry cH$+ (30 mL) was cooled to -78°C under Nz. Freshly distilled BF3 etherate (4.4 mL, 36 

mmol) was added followed by the dropwise addition of a solution of 58 (3.56 mmol) in dry CH.+Z$ (8 mL). 

The mixture was stirred overnight during which time the mixture attained room temperature. Water (10 mL) 

was added, then the aqueous layer was re-extracted (3 x 10 mLJ with CH2C&,. The combined organic solu- 

tions were washed with brine (2 x 20 mL), dried over MgSO, and evaporated at reduced pressure. The dark 

residue was purified by flash chromatography (SiO,, petroleum ether-acetone) to afford 12 as colorless crys- 

tals (379.4 mg, 89%)P 

We are grateful to the Natural Sciences and Engineering Research Council of Canada for financial sup- 

port of this work. 
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Table. Reactions of ketals with 1,2-bis(trimethylsiloxy)cyclopentene (5) 

a. Yield of pure, isolated product. b. From GC-MS of the crude reaction mixture. 
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